Свойства отношений на множестве примеры для чайников. Понятие отношения на множестве

Отношение, заданное на множестве, может обладать рядом свойств, а именно:

2. Рефлексивность

Определение. Отношение R намножестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х Û("х Î Х ) х R х

Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.

Граф рефлексивного отношения во всех вершинах имеет петли.

2. Антирефлексивность

Определение. Отношение R намножестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.

R антирефлексивно на Х Û("х Î Х )

Пример. Отношение «прямая х перпендикулярна прямой у » на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.

Граф антирефлексивного отношения не содержит ни одной петли.

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у » на множестве точек плоскости.

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

3. Симметричность

Определение . Отношение R намножестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у , следует, что и элемент у находится в отношении R с элементом х .

R симметричнона Х Û("х , у Î Х ) х R у Þ у R х

Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у , то и прямая у обязательно будет пересекать прямую х .

Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

4. Асимметричность

Определение . Отношение R намножестве Х называется асимметричным, если ни для каких элементов х , у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х .

R асимметричнона Х Û("х , у Î Х ) х R у Þ

Пример. Отношение «х < у » асимметрично, т.к. ни для какой пары элементов х , у нельзя сказать, что одновременно х < у и у < х .

Граф асимметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

5. Антисимметричность

Определение . Отношение R намножестве Х называется антисимметричным, если из того что х находится в отношении с у , а у находится в отношении с х следует, что х = у.

R антисимметричнона Х Û("х , у Î Х ) х R у Ù у R х Þ х = у

Пример. Отношение «х £ у » антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.

Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

6. Транзитивность

Определение . Отношение R намножестве Х называется транзитивным, если для любых элементов х , у , z из множества Х из того, что х находится в отношении с у , а у находится в отношении с z следует, что х находится в отношении с z.

R транзитивнона Х Û("х , у , z Î Х ) х R у Ù у R z Þ х R z

Пример. Отношение «х кратно у » транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.

Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

7. Связность

Определение . Отношение R намножестве Х называется связным, если для любых элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

R связнона Х Û("х , у , z Î Х ) х R у Ú у R z Ú х = у

Другими словами: отношение R намножестве Х называется связным, если для любых различных элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

Пример. Отношение «х < у » связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.

На графе связного отношения все вершины соединены между собой стрелками.

Пример. Проверить, какими свойствами обладает

отношение «х – делитель у », заданное на множестве

Х = {2; 3; 4; 6; 8}.

1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;

2) свойством антирефлексивности данное отношение не обладает;

3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;

4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;

5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;

6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.

Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.

§ 3. Отношение эквивалентности.
Связь отношения эквивалентности с разбиением множества на классы

Определение. Отношение R на множестве Х называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пример. Рассмотрим отношение «х однокурсник у » на множестве студентов педфака. Оно обладает свойствами:

1) рефлексивности, т.к. каждый студент является однокурсником самому себе;

2) симметричности, т.к. если студент х у , то и студент у является однокурсником студента х ;

3) транзитивности, т.к. если студент х - однокурсник у , а студент у – однокурсник z , то студент х будет однокурсником студента z .

Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.

Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.

Теорема. Если на множестве Х задано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х , порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Пример. На множестве Х = {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?

Построим граф данного отношения:


Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классыэквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток: Х 1 = {3; 6}, Х 2 = {1; 4; 7}, Х 3 = {2; 5; 8}.

Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.

В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения х и у имеют одинаковые числовые значения», «фигура х равна фигуре у ».

Свойства отношений:


1) рефлексивность;


2)симметричность;


3)транзитивность.


4)связанность.


Отношение R на множестве Х называется рефлексивным, если о каждом элементе множества Х можно сказать, что он находится в отношении R с самим собой: х Rх. Если отношение рефлексивно, то в каждой вершине графа имеется петля. И обратно, граф, каждая вершина которого содержит петлю, представляет собой граф рефлексивного отношения.


Примерами рефлексивных отношений являются и отношение «кратно» на множестве натуральных чисел (каждое число кратно самому себе), и отношение подобия треугольников (каждый треугольник подобен самому себе), и отношение «равенства» (каждое число равно самому себе) и др.


Существуют отношения, не обладающие свойством рефлексивности, например, отношение перпендикулярности отрезков: ab, ba (нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе). Поэтому на графе данного отношения нет ни одной петли.


Не обладает свойством рефлексивности и отношение «длиннее» для отрезков, «больше на 2» для натуральных чисел и др.


Отношение R на множестве Х называется антирефлексивным , если для любого элемента из множества Х всегда ложно х Rх: .


Существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Примером такого отношения может служить отношение «точка х симметрична точке у относительно прямой l », заданное на множестве точек плоскости. Действительно, все точки прямой l симметричны сами себе, а точки, не лежащие на прямой l, себе не симметричны.


Отношение R на множестве Х называется симметричным , если выполняется условие: из того, что элемент х находится в отношении с элементом y , следует, что и элемент y находится в отношении R с элементом х: xRyyRx .


Граф симметричного отношения обладает следующей особенностью: вместе с каждой стрелкой, идущей от х к y , граф содержит стрелку, идущую от y к х (рис. 35).


Примерами симметричных отношений могут быть следующие: отношение «параллельности» отрезков, отношение «перпендикулярности» отрезков, отношение «равенства» отрезков, отношение подобия треугольников, отношение «равенства» дробей и др.


Существуют отношения, которые не обладают свойством симметричности.


Действительно, если отрезок х длиннее отрезка у , то отрезок у не может быть длиннее отрезка х . Граф этого отношения обладает особенностью: стрелка, соединяющая вершины, направлена только в одну сторону.


Отношение R называют антисимметричным , если для любых элементов х и y из истинности xRy следует ложность yRx: : xRyyRx.


Кроме отношения «длиннее» на множестве отрезков существуют и другие антисимметричные отношения. Например, отношение «больше» для чисел (если х больше у , то у не может быть больше х ), отношение «больше на» и др.


Существуют отношения, которые не обладают ни свойством симметричности, ни свойством антисимметричности.


Отношение R на множестве Х называют транзитивным, если из того, что элемент х находится в отношении R с элементом y, а элемент y находится в отношении R с элементом z , следует, что элемент х находится в отношении R с элементом z : xRy и yRz xRz.


Граф транзитивного отношения с каждой парой стрелок, идущих от х к y и от y к z , содержит стрелку, идущую от х к z.


Свойством транзитивности обладает и отношение «длиннее» на множестве отрезков: если отрезок а длиннее отрезка b , отрезок b длиннее отрезка с , то отрезок а длиннее отрезка с. Отношение «равенства» на множестве отрезков также обладает свойством транзитивности: (а= b, b=с)(а=с).


Существуют отношения, которые не обладают свойством транзитивности. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку b , а отрезок b перпендикулярен отрезку с , то отрезки а и с не перпендикулярны!


Существует еще одно свойство отношений, которое называется свойством связанности, а отношение, обладающее им, называют связанным.


Отношение R на множестве Х называется связанным, если для любых элементов х и y из данного множества выполняется условие: если х и y различны, то либо х находится в отношении R с элементом y , либо элемент y находится в отношении R с элементом х . С помощью символов это можно записать так: xy xRy или yRx.


Например, свойством связанности обладает отношение «больше» для натуральных чисел: для любых различных чисел х и y можно утверждать, либо x>y , либо y>x.


На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.


Существуют отношения, которые не обладают свойством связанности. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и y , что ни число х не является делителем числа y , ни число y не является делителем числа х (числа 17 и 11 , 3 и 10 и т.д.).


Рассмотрим несколько примеров. На множестве Х={1, 2, 4, 8, 12} задано отношение «число х кратно числу y ». Построим граф данного отношения и сформулируем его свойства.


Про отношение равенства дробей говорят, оно является отношением эквивалентности.


Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно обладает свойством рефлексивности, симметричности и транзитивности.


Примерами отношений эквивалентности могут служить: отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).


В рассмотренном выше отношении «равенства дробей», множество Х разбилось на три подмножества: {; ; }, {; }, {}. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х , т.е. имеем разбиение множества на классы.


Итак, если на множестве Х задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества - классы эквивалентности.


Так, мы установили, что отношению равенства на множестве
Х ={ ;; ; ; ; } соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.


Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?


Во-первых, эквивалентный - это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности {; ; }, неразличимы с точки зрения отношения равенства, и дробь может быть заменена другой, например . И эта замена не изменит результата вычислений.


Во-вторых, поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. свойства, присущие некоторому классу, рассматриваются на одном его представителе.


В-третьих, разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные прямые между собой.


Другим важным видом отношений являются отношения порядка. Рассмотрим задачу.На множестве Х ={3, 4, 5, 6, 7, 8, 9, 10 } задано отношение «иметь один и тот же остаток при делении на 3 ». Это отношение порождает разбиение множества Х на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9 ). Во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 4, 7, 10 ). В третий попадут все числа, при делении которых на 3 в остатке получается 2 (это числа 5, 8 ). Действительно, полученные множества не пересекаются и их объединение совпадает с множеством Х . Следовательно, отношение «иметь один и тот же остаток при делении на 3 », заданное на множестве Х , является отношением эквивалентности.


Возьмем еще пример: множество учащихся класса можно упорядочить по росту или возрасту. Заметим, что это отношение обладает свойствами антисимметричности и транзитивности. Или всем известен порядок следования букв в алфавите. Его обеспечивает отношение «следует».


Отношение R на множестве Х называется отношением строгого порядка , если оно одновременно обладает свойствами антисимметричности и транзитивности. Например, отношение «х< y ».


Если же отношение обладает свойствами рефлексивности, антисимметричности и транзитивности, то такое оно будет являться отношением нестрогого порядка . Например, отношение «х y ».


Примерами отношения порядка могут служить: отношение «меньше» на множестве натуральных чисел, отношение «короче» на множестве отрезков. Если отношение порядка обладает еще и свойством связанности, то говорят, что оно является отношением линейного порядка . Например, отношение «меньше» на множестве натуральных чисел.


Множество Х называется упорядоченным, если на нем задано отношение порядка.


Например, множество Х= {2, 8, 12, 32 } можно упорядочить при помощи отношения «меньше» (рис. 41), а можно это сделать при помощи отношения «кратно» (рис. 42). Но, являясь отношением порядка, отношения «меньше» и «кратно» упорядочивают множество натуральных чисел по-разному. Отношение «меньше» позволяет сравнивать два любых числа из множества Х , а отношение «кратно» таким свойством не обладает. Так, пара чисел 8 и 12 отношением «кратно» не связана: нельзя сказать, что 8 кратно 12 либо 12 кратно 8.


Не следует думать, что все отношения делятся на отношения эквивалентности и отношения порядка. Существует огромное число отношений, не являющихся ни отношениями эквивалентности, ни отношениями порядка.

Бинарные отношения.

Пусть A и B – произвольные множества. Возьмем по одному элементу из каждого множества, a из A, b из B и запишем их так: (сначала элемент первого множества, затем элемент второго множества – т.е. нам важен порядок, в котором берутся элементы). Такой объект будем называть упорядоченной парой . Равными будем считать только те пары, у которых элементы с одинаковыми номерами равны. = , если a = c и b = d. Очевидно, что если a ≠ b, то .

Декартовым произведением произвольных множеств A и B (обозначается: AB) называется множество, состоящее из всех возможных упорядоченных пар, первый элемент которых принадлежит A, а второй принадлежит B. По определению: AB = { | aA и bB}. Очевидно, что если A≠B, то AB ≠ BA. Декартово произведение множества A само на себя n раз называется декартовой степенью A (обозначается: A n).

Пример 5. Пусть A = {x, y} и B = {1, 2, 3}.

AB = {, , , , , }.

BA = {<1, x>, <2, x>, <3, x>, <1, y>, <2, y>, <3, y>}.

AA = A 2 = {, , , }.

BB = B 2 = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <2, 3>, <3, 1>, <3, 2>, <3, 3>}.

Бинарным отношением на множестве M называется множество некоторых упорядоченных пар элементов множества M. Если r – бинарное отношение и пара принадлежит этому отношению, то пишут: r или x r y. Очевидно, r Í M 2 .

Пример 6. Множество {<1, 2>, <2, 2>, <3, 4>, <5, 2>, <2, 4>} является бинарным отношением на множестве {1, 2, 3, 4, 5}.

Пример 7. Отношение ³ на множестве целых чисел является бинарным отношением. Это бесконечное множество упорядоченных пар вида , где x ³ y, x и y – целые числа. Этому отношению принадлежат, например, пары <5, 3>, <2, 2>, <324, -23> и не принадлежат пары <5, 7>, <-3, 2>.

Пример 8. Отношение равенства на множестве A является бинарным отношением: I A = { | x Î A}. I A называется диагональю множества A.

Поскольку бинарные отношения являются множествами, то к ним применимы операции объединения, пересечения, дополнения и разности.

Областью определения бинарного отношения r называется множество D(r) = { x | существует такое y, что xry }. Областью значений бинарного отношения r называется множество R(r) = { y | существует такое x, что xry }.

Отношением, обратным к бинарному отношению r Í M 2 , называется бинарное отношение r -1 = { | Î r}. Очевидно, что D(r ‑1) = R(r), R(r ‑1) = D(r), r ‑ 1 Í M 2 .

Композицией бинарных отношений r 1 и r 2 , заданных на множестве M, называется бинарное отношение r 2 o r 1 = { | существует y такое, что Î r 1 и Í r 2 }. Очевидно, что r 2 o r 1 Í M 2 .

Пример 9. Пусть бинарное отношение r задано на множестве M = {a, b, c, d}, r = {, , , }. Тогда D(r) = {a, c}, R(r) = {b, c, d}, r ‑1 = {, , , }, r o r = {, , , }, r ‑1 o r = {, , , }, r o r ‑1 = {, , , , , , }.

Пусть r – бинарное отношение на множестве M. Отношение r называется рефлексивным , если x r x для любого x Î M. Отношение r называется симметричным , если вместе с каждой парой оно содержит и пару . Отношение r называется транзитивным , если из того, что x r y и y r z следует, что x r z. Отношение r называется антисимметричным , если оно не содержит одновременно пары и различных элементов x ¹ y множества M.

Укажем критерии выполнения этих свойств.

Бинарное отношение r на множестве M рефлексивно тогда и только тогда, когда I M Í r.

Бинарное отношение r симметрично тогда и только тогда, когда r = r ‑1 .

Бинарное отношение r на множестве M антисимметрично тогда и только тогда, когда r Ç r ‑1 = I M .

Бинарное отношение r транзитивно тогда и только тогда, когда r o r Í r.

Пример 10. Отношение из примера 6 является антисимметричным, но не является симметричным, рефлексивным и транзитивным. Отношение из примера 7 является рефлексивным, антисимметричным и транзитивным, но не является симметричным. Отношение I A обладает всеми четырьмя рассматриваемыми свойствами. Отношения r ‑1 o r и r o r ‑1 являются симметричными, транзитивными, но не являются антисимметричными и рефлексивными.

Отношением эквивалентности на множестве M называется транзитивное, симметричное и рефлексивное на М бинарное отношение.

Отношением частичного порядка на множестве М называется транзитивное, антисимметричное и рефлексивное на М бинарное отношение r.

Пример 11. Отношение из примера 7 является отношением частичного порядка. Отношение I A является отношением эквивалентности и частичного порядка. Отношение параллельности на множестве прямых является отношением эквивалентности.

Основы дискретной математики.

Понятие множества. Отношение между множествами.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Объекты, составляющие множество называются элементами множества. Для того чтобы некоторую совокупность объектов можно было называть множеством должны выполняться следующие условия:

· Должно существовать правило, по которому моно определить принадлежит ли элемент к данной совокупности.

· Должно существовать правило, по которому элементы можно отличить друг от друга.

Множества обозначаются заглавными буквами, а его элементы маленькими. Способы задания множеств:

· Перечисление элементов множества. - для конечных множеств.

· Указание характеристического свойства .

Пустым множеством – называется множество, не содержащее ни одного элемента (Ø).

Два множества называются равными, если они состоят из одних и тех же элементов. , A=B

Множество B называется подмножеством множества А ( , тогда и только тогда когда все элементы множества B принадлежат множеству A .

Например: , B =>

Свойство:

Примечание: обычно рассматривают подмножество одного и того е множества, которое называется универсальным (u). Универсальное множество содержит все элементы.

Операции над множествами.

A
B
1. Объединением 2-х множеств А и В называется такое множество, которому принадлежат элементы множества А или множества В (элементы хотя бы одного из множеств).

2.Пересечением 2-х множеств называется новое множество, состоящее из элементов, одновременно принадлежат и первому и второму множеству.

Н-р: , ,

Свойство: операции объединения и пересечения.

· Коммутативность.

· Ассоциативность. ;

· Дистрибутивный. ;

U
4.Дополнение . Если А – подмножество универсального множества U , то дополнением множества А до множества U (обозначается ) называется множество состоящее из тех элементов множества U , которые не принадлежат множеству А .

Бинарные отношения и их свойства.

Пусть А и В это множества производной природы, рассмотрим упорядоченную пару элементов (а, в) а ϵ А, в ϵ В можно рассматривать упорядоченные «энки».

(а 1 , а 2 , а 3 ,…а n) , где а 1 ϵ А 1 ; а 2 ϵ А 2 ; …; а n ϵ А n ;

Декартовым (прямым) произведением множеств А 1 , А 2 , …, А n , называется мн-во, которое состоит из упорядоченных n k вида .

Н-р: М = {1,2,3}

М× М= М 2 = {(1,1);(1,2);(1,3); (2,1);(2,2);(2,3); (3,1);(3,2);(3,3)}.

Подмножества декартова произведения называется отношением степени n или энарным отношением. Если n =2, то рассматривают бинарные отношения. При чем говорят, что а 1 , а 2 находятся в бинарном отношении R , когда а 1 R а 2.

Бинарным отношением на множестве M называется подмножество прямого произведения множества n самого на себя.

М× М= М 2 = {(a, b )| a, b ϵ M } в предыдущем примере отношение меньше на множестве М порождает следующее множество: {(1,2);(1,3); (2,3)}

Бинарные отношения обладают различными свойствами в том числе:

· Рефлексивность: .

· Антирефлексивность (иррефлексивность): .

· Симметричность: .

· Антисимметричность: .

· Транзитивность: .

· Асимметричность: .

Виды отношений.

· Отношение эквивалентности;

· Отношение порядка.

v Рефлексивное транзитивное отношение называется отношением квазипорядка.

v Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.

v Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.

v Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.

Чтобы определить общее понятие бинарного отношения на множестве, поступим так же, как и в случае с соответствиями,

т.е. рассмотрим сначала конкретный пример. Пусть на множестве X = {2, 4, 6, 8} задано отношение «меньше». Это означает, что для любых двух чисел из множества X можно сказать, какое из них меньше: 2 < 4, 2 < 6, 2 < 8, 4 < 6, 4 < 8, 6 < 8. Полученные неравенства можно записать иначе, в виде упорядоченных пар: (2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8). Но все эти пары есть элементы декартова произведения X х X, поэтому об отношении «меньше», заданном на множестве X, можно сказать, что оно является подмножеством множества X х X.

Вообще бинарные отношения на множестве X определяют следующим способом:

Определение. Бинарным отношением на множестве X называется всякое подмножество декартова произведения X х X.

Так как в дальнейшем мы будем рассматривать только бинарные отношения, то слово «бинарные», как правило, будем опускать.

Условимся отношения обозначать буквами R, S, Т, Р и др.

Если R - отношения на множестве X, то, согласно определению, R X х X. С другой стороны, если задано некоторое подмножество множества X х X, то оно определяет на множестве X некоторое отношение R.

Утверждение о том, что элементы х и у находятся в отношении R, можно записывать так: (х, у) R или x R y. Последняя запись читается: «Элемент х находится в отношении R с элементом у».

Отношения задают так же, как соответствия. Отношение можно задать, перечислив пары элементов множества X, находящиеся в этом отношении. Формы представления таких пар могут быть различными - они аналогичны формам задания соответствий. Отличия касаются задания отношений при помощи графа.

Построим, например, граф отношений «меньше», заданного на множестве Х= (2, 4, 6, 8}. Для этого элементы множества X изобразим точками (их называют вершинами графа), а отношение «меньше» - стрелкой (рис. 1).

На том же множестве X можно рассмотреть другое отношение - «кратно». Граф этого отношения будет в каждой вершине иметь петлю (стрелку, начало и конец которой совпадают), так как каждое число кратно самому себе (рис. 2).

Отношение можно задать при помощи предложения с двумя переменными. Так, например, заданы рассмотренные выше отношения «меньше» и «кратно», причем использована краткая форма предложений «число х меньше числа у» и «число х кратно числу у». Некоторые такие предложения можно записывать, используя символы. Например, отношения «меньше» и «кратно» можно было задать в таком виде: «х<у», «х у». Отношение «х больше у на 3» можно записать в виде равенства х = у + 3 (или х – у = 3).

Для отношения R, заданного на множестве X, всегда можно задать отношение R -1 , ему обратное, - оно определяется так же, как соответствие, обратное данному. Например, если R - отношение «х меньше у», то обратным ему будет отношение «у больше х».

Понятием отношения, обратного данному, часто пользуются при начальном обучении математике. Например, чтобы предупредить ошибку в выборе действия, с помощью которого решается задача: «У Пети 7 карандашей, что на 2 меньше, чем у Бори. Сколько карандашей у Бори?» - ее переформулируют: «У Пети 7 карандашей, а у Бори на 2 больше. Сколько карандашей у Бори?» Видим, что переформулировка свелась к замене отношения «меньше на 2» обратным ему отношением «больше на 2».

Свойства отношений

Мы установили, что бинарное отношение на множестве X представляет собой множество упорядоченных пар элементов, принадлежащих декартову произведению ХхХ. Это математическая сущность всякого отношения. Но, как и любые другие понятия, отношения обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые. Рассмотрим на множестве отрезков, представленных на рис. 3, отношения перпендикулярности, равенства и «длиннее». Построим графы этих отношений (рис. 4) и будем их сравнивать.

Видим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отношение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлексивности или просто, что оно рефлексивно .

Определение. Отношение R на множестве X называется рефлексивным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х <=> xRx для любого х X

Если отношение R рефлексивно на множестве X, то в каждой вершине графа данного отношения имеется петля. Справедливо и обратное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подобен самому себе).

Существуют отношения, которые свойством рефлексивности на обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе. Поэтому на графе отношения перпендикулярности (рис. 4) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярности и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направлении. Эта особенность графа отражает те свойства, которыми обладают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;

Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков говорят, что они обладают свойством симметричности или, просто симметричны.

Определение. Отношение R на множестве X называется симметричным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на X <=> (xRy => yRx)

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к х. Справедливо и обратное утверждение. Граф, содержащий вместе с каждой стрелкой, идущей от х к у, и стрелку, идущую от у к х, является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных отношений присоединим еще такие:

Отношение параллельности на множестве прямых (если прямая х параллельна прямой у, то и прямая у параллельна прямой х);

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на множестве отрезков. Действительно, если отрезок х длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметричности или просто антисимметрично.

Определение. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится .

антисимметрично на X <=> (xRy и х≠у => )

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого соединены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством антисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может быть больше х);

Отношение «больше на 2» для чисел (если х больше у на 2, то у не может быть больше на 2 числа х).

Существуют отношения, не обладающие ни свойством симметричности, ни свойством антисимметричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 5. Он показывает, что данное отношение не обладает ни свойством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отношения «длиннее» (рис. 4). На нем можно заметить: если стрелки проведены от е к а и от а к с , то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с , то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзитивным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом z, следует, что элемент х находится в отношении R с элементом z.

Используя символы, это определение можно записать в таком виде:

R транзитивно на X <=> (xRy и yRz => xRz)

Граф транзитивного отношения с каждой парой стрелок, идущих от х к у и у к z , содержит стрелку, идущую от х к z . Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z , то отрезок х равен отрезку z . Это свойство отражено и на графе отношения равенства (рис. 4)

Существуют отношения, которые свойством транзитивности не обладают. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку d, а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свойством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связанным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находится в отношении R с элементом у, либо элемент у находится в отношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связанно на множестве X <=> (х≠у xRy или yRx)

Например, свойством связанности обладают отношения «больше» для натуральных чисел: для любых различных чисел х и у можно утверждать, что либо х> у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обладают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа хну, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отношения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, заданном на множестве отрезков (рис. 4), то получается, что оно рефлексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности-симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве

отрезков связанными не являются.

Задача 1. Сформулировать свойства отношения R, заданного при помощи графа (рис. 6).

Решение. Отношение R- антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с , на графе есть стрелка, идущая от b к с .

Отношение R - связанно, так как любые две вершины соединены стрелкой.

Отношение R свойством рефлексивности не обладает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число у не больше числа х в 2 раза.

Данное отношение не обладает свойством рефлексивности, потому что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число х больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связанности не обладает, так как существуют пары таких чисел х и у, что ни число не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3,5 и 8 и др.